
LongListBench: A Benchmark for Long-List Entity
Extraction Under Layout and OCR Noise

Anton Fedoruk1∗ Serhii Shchoholiev1† Akhil Mehta1‡

1Kay.ai, Brooklyn, NY, USA

January 28, 2026

Abstract

Current document extraction benchmarks focus on short, key-value forms, leaving
long-list entity extraction (recovering dozens to hundreds of repeated records from ta-
bles and mixed layouts) underexplored. Business documents such as loss runs, invoices,
and itemized bills commonly contain such lists. We introduce LongListBench, a syn-
thetic benchmark for long-list extraction that pairs structured ground truth (JSON)
with rendered PDFs and OCR text, enabling reproducible end-to-end evaluation under
layout and OCR noise. The benchmark injects seven document phenomena observed
in production (page breaks, multi-row entities, duplicates, large documents, irrelevant
tables, multi-column layouts, and merged cells) to stress segmentation and schema-
conformant extraction at scale. Across 80 documents (6,828 incident rows), incident
and reference numbers achieve 100% verbatim coverage in OCR, while zero-shot LLM
baselines achieve 81.9% (Gemini 2.5) and 78.1% (GPT-5.2) field-level F1. Results
highlight the table format and layout disruptions as primary failure modes, even when
identifiers are reliably present.

1 Introduction
Long-list entity extraction (recovering dozens to hundreds of repeated records from semi-
structured documents) is a core requirement for document automation in domains such as
insurance, finance, and procurement. While recent advances in document understanding
models (e.g., layout-aware pretraining [1] and OCR-free approaches [2]) and general-purpose
LLMs have improved extraction quality, robust evaluation of long-list scenarios remains
limited.

Many established benchmarks focus on key-value style extraction or relatively short, form-
like documents (e.g., FUNSD [3]) or narrow document types such as receipts (SROIE [4]).

∗anton@kay.ai
†serhii@kay.ai
‡akhil@kay.ai

1

More recent datasets such as DocILE [5] include business documents and line items, but
long lists in the wild often exhibit additional failure modes: repeated entities, page breaks,
multi-column reading order, irrelevant tables, and table constructs such as merged cells.
VRDU [6] highlights that hierarchical and long-list fields remain challenging for LLM-based
extraction.

We introduce LongListBench, a benchmark designed to stress-test long-list extraction
from semi-structured business documents with long incident/line-item lists under systemati-
cally injected document phenomena and OCR noise. The benchmark is inspired by recurring
patterns observed in real-world claims documents.

1.1 Background and Motivation
This work originates from production challenges encountered at Kay.ai and in prior indus-
try experience. A client engagement required generating Statements of Values (SOVs) from
loss-run PDFs containing insurance claims, often spanning hundreds of pages with varied for-
mats and numerous layout artifacts. After evaluating off-the-shelf models and commercial
extraction services, we identified long-list extraction as an underserved problem: existing
tools performed adequately on short forms but degraded on documents with dozens to hun-
dreds of repeated records. Similar challenges arose when processing itemized medical bills
containing thousands of claim lines, exhibiting wide variation in table structures and OCR
quality. These experiences motivated the development of a dedicated extraction pipeline
(to be described in a subsequent paper) and, in turn, the need for a rigorous benchmark
to measure progress on extraction methods that remain reliable as list length grows and as
layout artifacts accumulate.

1.2 Research Questions
This work is organized around three practical questions:

• How do common long-list document phenomena (page breaks, duplicates, multi-row
cells, multi-column layouts, irrelevant tables, merged cells) affect extraction quality?

• To what extent are end-to-end failures attributable to OCR versus downstream extrac-
tion?

• How do strong off-the-shelf LLMs perform under a simple, reproducible zero-shot pro-
tocol?

1.3 Contributions
We make the following contributions:

• A reproducible benchmark generation pipeline that produces paired ground truth
JSON, rendered PDFs, and OCR text.

• A dataset of 80 documents (40 detailed, 40 table) containing 6,828 incident rows across
four difficulty tiers, with an extreme tier reaching 500 incidents per document.

2

• A taxonomy of seven injected problem types and evaluation scripts for field-level scoring
and OCR identifier coverage.

• Baseline results for GPT-5.2 and Gemini 2.5 under a shared prompt, highlighting
remaining gaps in long-list extraction.

2 Related Work
Research on information extraction (IE) from visually rich documents has produced a broad
ecosystem of datasets and models. However, much of the public evaluation landscape em-
phasizes either short documents (e.g., forms) or key-value extraction, leaving long-list entity
extraction underexplored.

2.1 Document IE benchmarks
Early and widely used benchmarks such as FUNSD [3] focus on form understanding in noisy
scans. Receipt datasets and challenges such as SROIE [4] emphasize OCR and key fields
in narrow document types. These benchmarks are valuable, but typically contain relatively
short documents and do not directly stress long lists of repeated entities.

DocILE [5] broadens the scope to business documents and includes line-item recognition,
which is closer in spirit to long-list extraction. VRDU [6] further argues that hierarchical
and repeated fields (e.g., invoice line items) remain difficult for LLM-based extraction. Our
benchmark complements these efforts by focusing on list length, repeated entity boundaries,
and a targeted taxonomy of long-list failure modes.

2.2 Document understanding models
Layout-aware pretraining approaches such as LayoutLM [1] jointly model textual content and
2D document structure, yielding strong performance on a range of document understanding
tasks. In parallel, OCR-free approaches such as Donut [2] avoid explicit OCR by directly
generating structured outputs from document images, mitigating OCR error propagation at
the cost of specialized training.

In contrast, our work is model-agnostic: we provide paired PDF, OCR text, and ground
truth, enabling evaluation of OCR-based pipelines, OCR-free models, and LLM-based ex-
traction. Our primary goal is to support reproducible measurement of long-list extraction
robustness under realistic layout artifacts.

3 Benchmark Construction
We construct LongListBench1, a synthetic benchmark for long-list entity extraction in semi-
structured business documents with long incident/line-item lists, inspired by recurring pat-
terns observed in real-world claims documents. Each benchmark instance consists of (i)

1Code, data, and implementation details are available at https://github.com/kaydotai/longlistbe
nch.

3

https://github.com/kaydotai/longlistbench
https://github.com/kaydotai/longlistbench

structured ground truth incidents (JSON), (ii) a rendered PDF, and (iii) OCR text of the
PDF in Markdown.

3.1 Entity schema
Ground truth incidents follow a structured schema (see Appendix A) that includes inci-
dent identifiers, policy metadata, narrative text, and nested financial breakdowns (bi, pd,
lae, ded). While downstream workflows often emphasize fields such as incident_number,
company_name, date_of_loss, status, driver_name, coverage_type, and total_incurred,
our evaluator requires and scores the full schema.

3.2 Document generation
Figure 1 illustrates the benchmark construction pipeline, which consists of two phases.

Schema design (green path). Human annotators reviewed real insurance loss run docu-
ments from trucking companies to identify common fields, layouts, and formatting patterns.
From this analysis, we defined a structured JSON schema capturing incident identifiers, pol-
icy metadata, narrative descriptions, and nested financial breakdowns. This schema serves
as ground truth for evaluation.

Synthetic generation (purple path). Rather than using real documents (which con-
tain sensitive information), we generate synthetic documents that preserve realistic layout
challenges:

1. Problem configuration: We identify recurring layout artifacts in real documents
(e.g., page breaks splitting records, merged cells, and multi-column layouts) and encode
them as configurable problem types.

2. Document rendering: We generate synthetic incident records under the target
schema, render them to HTML with selected problem types injected, and convert
the resulting HTML to PDF via headless Chromium.

3. OCR: We obtain OCR text for each PDF using Gemini 2.5 Flash on page images.

4. Markdown output: OCR text is stored as structured Markdown that preserves
table structure and approximate spatial layout, consistent with typical OCR pipeline
outputs.

Documents are rendered in one of two formats: (i) Detailed, which uses repeated incident
blocks with narrative text and financial tables, or (ii) Table, which uses a compact tabular
representation. All generation uses seeded randomness for reproducibility.

3.3 Injected problem types
We inject seven recurring document phenomena that complicate long-list extraction. These
effects are applied at the HTML level prior to PDF rendering.

4

Figure 1: Benchmark construction pipeline. Green path: schema design from real documents.
Purple path: synthetic document generation and OCR processing.

Page breaks. In real-world documents, page boundaries frequently split logical entities
mid-record. A single incident may begin on one page with identifiers and description, while
its financial breakdown appears on the next. This is particularly common in loss runs and
itemized bills where dense formatting leaves no natural breakpoints. OCR systems typically
process pages independently, producing separate text blocks that must be reassembled. Ex-
traction models must recognize continuation patterns and avoid treating the second half of
a split record as a new entity or dropping it entirely.

Multi-row entities. Table cells often contain text that wraps across multiple lines, espe-
cially for description fields, addresses, or claimant lists. When OCR linearizes such content, it
may interleave text from adjacent columns or treat each line as a separate cell. For example,
a description spanning three lines might appear as three distinct rows in the OCR output,
with column alignment lost. Extraction models must recognize that these lines belong to a
single logical cell and reconstruct the original cell boundaries from visual or positional cues.

Exact duplicates.
Production documents sometimes contain intentionally repeated records. In insurance con-
texts, the same incident may appear multiple times due to amendments, re-openings, or
reporting across multiple policy periods. Unlike data entry errors, these duplicates are se-

5

Figure 2: Example of an incident split across a page boundary.

mantically meaningful and must be preserved in the extracted output. Many extraction
pipelines include deduplication as a post-processing step, which would incorrectly collapse
valid duplicate entries. Models must faithfully reproduce the document content without
applying implicit deduplication logic.

Large documents. Real loss runs and itemized bills routinely contain hundreds of line
items. A single trucking company’s annual loss run may list 200–500 incidents; a hospital
bill for a complex procedure can exceed 1,000 charge lines. These documents push against
context window limits of current LLMs. Even models with 128K+ token windows may
exhibit degraded recall on items appearing in the middle of very long documents (the "lost
in the middle" phenomenon). We include an extreme tier with 500 incidents per document
to measure how extraction quality scales with document length.

Multiple tables. Business documents frequently embed auxiliary tables alongside the
primary data. A loss run PDF might include a cover page with agent contact information,
a summary table of totals by coverage type, or a glossary of status codes; none of these
should be extracted as incident records. Models must distinguish the target entity table
from these distractors based on schema matching, header recognition, or positional cues.
Naive approaches that extract all tabular content will produce false positives from irrelevant
tables.

6

Figure 3: Example of a cell containing multiple lines of text.

Multi-column layout. Some documents use multi-column layouts to fit more content per
page. This creates reading-order ambiguity: should text be read left-to-right across columns
or top-to-bottom within each column? Standard OCR often assumes a single-column flow,
interleaving content from parallel columns into an incoherent sequence. For example, incident
#1’s description might be concatenated with incident #10’s financial data if both appear at
the same vertical position in adjacent columns. Correct extraction requires column detection
and proper reading-order reconstruction.

Figure 4: Example of a two-column document layout.

Merged cells. Tables often use merged cells for visual grouping. A common pattern is
merging the company name cell across all incidents belonging to that company, or merging
a coverage type header across its associated rows. In the rendered PDF, these appear as
single cells spanning multiple rows or columns. OCR may report the merged cell’s content
only once, leaving subsequent rows with empty values for that field. Extraction models must
propagate the merged value to all spanned rows, recognizing that an empty cell indicates
inheritance from above rather than a missing value.

7

Figure 5: Example of a table with merged and spanning cells.

3.4 Dataset scale
The released dataset (longlistbench-v1, version 1.0.1) contains 80 PDFs (40 detailed, 40
table) with 6,828 incident rows. Difficulty tiers are configured as 15 easy instances (10
claims/PDF), 12 medium (25 claims/PDF), 8 hard (50 claims/PDF), and 5 extreme (100
claims/PDF nominal). In the extreme tier, enabling large_doc expands each document to
500 incidents. Enabling duplicates injects additional duplicate rows (up to 5 per docu-
ment), causing the number of incident rows to exceed the nominal tier size.

Across the 80 documents, the most common injected issues are multi-row entities (62/80),
page breaks (56/80), duplicates (56/80), and multiple tables (40/80).

4 Evaluation
We evaluate systems on the task of extracting a list of incident records from the OCR text
of each PDF. The benchmark provides both the OCR text and a structured JSON ground
truth for each document.

4.1 OCR
All PDFs are converted to Markdown using a Gemini vision model. Each page is rendered
to an image and converted to text with a system prompt that emphasizes preserving layout,
spacing, and tables. In particular, tables are emitted in a CSV-like form inside Markdown,
and the output is concatenated across pages.

4.2 LLM extraction protocol
We provide a lightweight, zero-shot evaluation harness that applies the same extraction
prompt to multiple LLM providers and requires the model to return a JSON list of incident
objects conforming to the full incident schema. The prompt includes a JSON Schema seri-
alization of the target Pydantic model and is executed at temperature 0. Where supported,
we request native structured outputs (e.g., response schemas) to reduce formatting errors.

To ensure schema conformance, model outputs are validated and normalized against a
Pydantic schema before scoring (see Appendix A for full schema definitions and scoring

8

rules). Predictions and aggregate reports are stored as machine-readable JSON (with an
additional Markdown summary for convenience).

4.3 Chunking and merging for long documents
Hard and extreme documents can contain hundreds of incidents, and the OCR text may
exceed practical context limits. The evaluation harness therefore supports chunked extrac-
tion: the OCR text is split into overlapping chunks using simple incident-number markers,
targeting at most eight incidents per chunk. Each chunk is extracted independently, and
chunk-level predictions are merged by normalized incident identifier, preferring non-empty
fields and combining nested financial breakdown subfields.

4.4 Report regeneration and validation
To support reproducible analysis, the harness can regenerate summary reports offline from
saved prediction files and optionally reuse extraction-time values from a previous report. A
companion checker recomputes metrics from the saved predictions and the golden data, and
flags schema violations or report inconsistencies.

4.5 Field-level matching and metrics
For scoring we use the incident number as the record identifier. Incident numbers are normal-
ized by stripping common prefixes (e.g., #, Incident #). Let G be the list of ground-truth
records and P be the list of predicted records. We compute micro precision/recall/F1 over
field-value pairs, after canonicalizing each incident under the schema.

Canonicalization strips whitespace from strings, maps empty optional strings to null, sorts
claimant lists, and rounds monetary values in nested financial breakdowns to two decimal
places. Metrics are computed per document and then averaged across documents for tier-
and format-level summaries.

For each incident, we flatten its fields into a multiset of canonicalized triples (incident
_id, field_path, value) (including nested financial breakdown fields). We then define:

found = |F(G) ∩ F(P)|, (1)

recall = found
|F(G)| , (2)

precision = found
|F(P)| , (3)

F1 = 2 precision recall
precision + recall , (4)

where F(·) denotes the multiset of flattened field-value pairs across incidents. We addition-
ally report missing and extra incident identifiers and count exact record matches for incidents
whose canonicalized objects match exactly.

9

Table 1: OCR identifier coverage on the full dataset (80 documents).

Identifier Mean coverage Min coverage
Incident number 100.0% 100.0%
Reference number 100.0% 100.0%

Table 2: Zero-shot LLM baseline results across the full benchmark (80 documents) under
schema-conformant, field-level scoring (computed from released evaluation reports).

Model Samples Avg Recall Avg Precision Avg F1
Gemini 2.5 80 80.4% 83.4% 81.9%
GPT-5.2 80 76.8% 79.6% 78.1%

5 Results
We summarize results for (i) OCR fidelity and (ii) baseline extraction performance.

5.1 OCR identifier coverage
We measure how often key identifiers from the ground truth appear verbatim in the OCR
text. Across the full dataset (80 OCR texts), incident numbers and reference numbers exhibit
100% coverage (mean and minimum). These results indicate that, for primary identifiers,
our OCR step rarely drops information and that most downstream failures are attributable
to extraction rather than OCR errors.

5.2 Zero-shot LLM extraction baseline
We evaluate two LLMs using the shared prompt and released evaluation harness. We report
schema-conformant, field-level scoring across the full benchmark (80 documents: 40 detailed,
40 table) using the released per-tier evaluation reports. Averaged across all documents,
Gemini 2.5 achieves 81.9% average F1 (80.4% recall, 83.4% precision), and GPT-5.2 achieves
78.1% average field-level F1 (76.8% recall, 79.6% precision) (Table 2). Across all models,
the detailed format is substantially easier than the table format (Table 3), and performance
varies meaningfully across difficulty tiers (Table 4).

Qualitatively, errors often manifest as local field-level deviations (e.g., missing optional
strings, numeric drift in financial breakdowns, or small identifier formatting mistakes) spread
across an otherwise correct long list.

These findings suggest that recovering identifiers is largely deterministic under our OCR
pipeline, while the main open challenge for long-list extraction is robustly segmenting and
populating full per-incident records under layout disruptions (page breaks, multi-column
order, irrelevant tables, merged cells) and scale (hundreds of incidents).

10

Table 3: Baseline F1 by document format aggregated across all tiers (computed from released
evaluation reports).

Model Detailed F1 Table F1
Gemini 2.5 89.8% 73.9%
GPT-5.2 83.5% 72.8%

Table 4: Baseline F1 by difficulty tier (average across documents within each tier; computed
from released evaluation reports).

Tier Samples Gemini 2.5 F1 GPT-5.2 F1
Easy 30 85.1% 80.2%
Medium 24 80.5% 76.7%
Hard 16 78.1% 76.0%
Extreme 10 81.6% 78.9%

6 Limitations and Future Directions

6.1 Limitations
LongListBench is designed as a measurement tool for long-list extraction under controlled
layout and OCR noise. The current release prioritizes reproducibility and targeted stressors
over exhaustive coverage of document variability. Table 5 summarizes what LongListBench
v1 covers and what it does not.

In addition, our primary record identifier is the incident number. This choice simplifies
evaluation and enables stable alignment at scale, but it can understate performance when
a model extracts most fields correctly while corrupting identifiers. It also complicates the
interpretation of results on documents containing exact duplicate incidents.

6.2 Future directions
We view LongListBench as an extensible benchmark and evaluation harness. The most
valuable extensions are those that broaden the noise distribution, provide stronger signals for
layout reconstruction, and benchmark extraction protocols that remain robust at hundreds
of records.

Broader OCR conditions and layout supervision. An immediate next step is to
expand OCR conditions beyond a single VLM-based OCR output. This includes scanned
variants (blur, noise, skew, and resolution changes), classical OCR baselines, and prompt
variations. For a small subset, releasing page-level supervision (e.g., table cell boxes or
reading-order annotations) would enable controlled evaluation of layout-aware reconstruction
methods.

11

Table 5: Scope of LongListBench v1.

Covered in v1 Not covered / out of scope
Claims-style long lists (loss runs) in two
renderings (detailed and table)

Other long-list families (invoices, purchase
orders, medical billing, financial state-
ments) and non-English documents

Programmatic layouts with seven injected
phenomena

Scan artifacts (skew, blur, stamps, hand-
writing), complex typography, and highly
idiosyncratic templates

VLM-based OCR text with strong identi-
fier retention

Broader OCR stacks and prompt variants;
OCR bounding boxes and reading-order
supervision

Schema-conformant, field-level micro scor-
ing with canonicalization

Semantic equivalence, downstream task-
based metrics, and duplicate-aware entity
matching

Protocol benchmarks for long contexts. The extreme tier (500 incidents) is intended
to pressure extraction protocols, not only base model quality. A natural extension is to
benchmark chunking and merge strategies, retrieval-augmented extraction, and layout-aware
segmentation under a unified interface, and to report cost and latency alongside accuracy.

Richer evaluation views. Field-level micro F1 is a stable aggregate, but it hides sys-
tematic error patterns. Future releases should include per-field breakdowns, record-level
exact match rates, and duplicate-aware matching that treats repeated incidents as first-class
entities rather than an edge case of identifier collisions.

Broader document families. Finally, expanding the benchmark to additional long-list
domains and templates would test whether methods generalize beyond claims-style tables,
and would make LongListBench a more comprehensive measurement suite for long-list ex-
traction.

7 Conclusion
LongListBench targets a persistent gap in document understanding evaluation: extracting
long lists of repeated entities from semi-structured business documents under realistic layout
and OCR noise. We presented a benchmark construction pipeline that produces paired
(PDF, OCR, JSON) artifacts and systematically injects common long-list failure modes.

7.1 Summary
Our main contributions are:

• A reproducible benchmark generation pipeline for semi-structured documents with long
incident lists spanning two formats and four difficulty tiers.

12

• A taxonomy of seven problem types that frequently break long-list extraction systems,
including duplicates, page breaks, multi-row entities, multi-column layout, and merged
cells.

• An evaluation harness and baseline results that quantify the gap between near-perfect
OCR identifier retention and imperfect end-to-end extraction.

7.2 Practical takeaways
We intend LongListBench to be useful as a measurement tool for both research and engi-
neering workflows. Two practical takeaways are worth emphasizing. First, identifier reten-
tion in OCR is near-perfect (Table 1), so most end-to-end failures should be attributed to
downstream parsing, segmentation, and field population rather than OCR errors. Second,
even with schema-conformant structured outputs and a shared prompt, field-level extraction
across the full benchmark remains materially below perfect (Table 2), with a large gap be-
tween detailed and table formats (Table 3) and meaningful variation across difficulty tiers
(Table 4), indicating substantial headroom for methods that explicitly model reading order,
table structure, and long-range consistency.

7.3 Recommended reporting
For comparability across papers and systems, we recommend that LongListBench results
report (i) OCR identifier coverage, (ii) schema-conformant field-level precision/recall/F1
under the released evaluator, and (iii) the extraction protocol used for long documents (e.g.,
full-context vs chunking, chunk sizes, and merge strategy). The extreme tier, in particular,
is intended to stress scaling behavior: methods that succeed on short lists may fail due to
context limits, brittle segmentation, or accumulated small errors across hundreds of records.

7.4 Future Work
We view the benchmark as a foundation for studying scalable, layout-robust extraction. Im-
mediate next steps include improved handling of duplicates and merged cells, and evaluation
of methods that can reliably extract hundreds of incidents in a single document (Section 6).

References
[1] Y. Xu, M. Li, L. Cui, S. Huang, F. Wei, and M. Zhou, Layoutlm: Pre-training of text

and layout for document image understanding, 2020. doi: 10.1145/3394486.3403172.
arXiv: 1912.13318 [cs.CL]. [Online]. Available: https://arxiv.org/abs/1912.
13318.

[2] G. Kim et al., Ocr-free document understanding transformer, 2022. arXiv: 2111.15664
[cs.LG]. [Online]. Available: https://arxiv.org/abs/2111.15664.

13

https://doi.org/10.1145/3394486.3403172
https://arxiv.org/abs/1912.13318
https://arxiv.org/abs/1912.13318
https://arxiv.org/abs/1912.13318
https://arxiv.org/abs/2111.15664
https://arxiv.org/abs/2111.15664
https://arxiv.org/abs/2111.15664

[3] G. Jaume, H. K. Ekenel, and J.-P. Thiran, Funsd: A dataset for form understanding
in noisy scanned documents, 2019. arXiv: 1905.13538 [cs.IR]. [Online]. Available:
https://arxiv.org/abs/1905.13538.

[4] Z. Huang et al., Icdar2019 competition on scanned receipt ocr and information extrac-
tion, 2021. doi: 10.1109/ICDAR.2019.00244. arXiv: 2103.10213 [cs.AI]. [Online].
Available: https://arxiv.org/abs/2103.10213.

[5] Š. Šimsa et al., Docile benchmark for document information localization and extraction,
2023. arXiv: 2302.05658 [cs.CL]. [Online]. Available: https://arxiv.org/abs/2302.
05658.

[6] Z. Wang, Y. Zhou, W. Wei, C.-Y. Lee, and S. Tata, “Vrdu: A benchmark for visually-
rich document understanding,” in Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, arXiv:2211.15421, 2023. doi: 10 . 1145 /
3580305.3599929. [Online]. Available: https://arxiv.org/abs/2211.15421.

14

https://arxiv.org/abs/1905.13538
https://arxiv.org/abs/1905.13538
https://doi.org/10.1109/ICDAR.2019.00244
https://arxiv.org/abs/2103.10213
https://arxiv.org/abs/2103.10213
https://arxiv.org/abs/2302.05658
https://arxiv.org/abs/2302.05658
https://arxiv.org/abs/2302.05658
https://doi.org/10.1145/3580305.3599929
https://doi.org/10.1145/3580305.3599929
https://arxiv.org/abs/2211.15421

Appendix A: Evaluation Schemas
A recurring challenge with existing document extraction benchmarks is incomplete or am-
biguous schema documentation. Without clear specifications, it can be difficult to under-
stand expected field formats, handling of optional values, or normalization rules. Researchers
attempting to reproduce results must often reverse-engineer these details from examples or
evaluation scripts, leading to inconsistent implementations and incomparable metrics.

To ensure full reproducibility, we provide complete schemas with explicit type annota-
tions, default values, and field descriptions. The evaluation script validates model outputs
against these schemas before scoring, ensuring that format errors are caught early rather
than silently degrading metrics.

A.1 Financial Breakdown Schema
Each incident contains four financial breakdown objects (bi, pd, lae, ded) with the following
fields:

Field Type Default Description

reserve float 0.0 Amount reserved for potential payout
paid float 0.0 Amount already paid
recovered float 0.0 Amount recovered (e.g., deductible)
total_incurred float 0.0 Reserve + Paid - Recovered

A.2 Loss Run Incident Schema
The primary entity schema representing a single insurance claim incident:

Field Type Default Description

incident_number string required Incident number (e.g., #12345)
reference_
number

string required Reference ID (e.g., L240123)

company_name string required Trucking company name
division string General Company division
coverage_type string required Coverage type (Liability, Physical

Damage, Inland Marine, Cargo)
status string required Open or Closed
policy_number string required Policy identifier
policy_state string required Policy state abbreviation
cause_code optional

string
null Internal cause code

description string required Detailed incident description

15

Field Type Default Description

handler string Claims
Adjuster

Claims handler

unit_number optional
string

null Vehicle/truck unit ID

date_of_loss string required Date incident occurred
loss_state string required State where loss occurred
date_reported string required Date reported to insurance
agency optional

string
null Insurance agency name

insured string required Insured party name
claimants list of

strings
[] List of claimants

driver_name optional
string

null Driver name at time of incident

bi financial
breakdown

{} Bodily Injury

pd financial
breakdown

{} Property Damage

lae financial
breakdown

{} Loss Adjustment Expense

ded financial
breakdown

{} Deductible

adjuster_notes optional
string

null Additional adjuster notes

A.3 Extraction Output Schema
Models are expected to return a JSON object matching the following structure:

Field Type Default Description

incidents list of
LossRunIncident

required List of extracted incident records

A.4 Field Scoring Rules
We compute schema-conformant, field-level precision/recall/F1 by canonicalizing records
under the schema and comparing multisets of field-value pairs.

Step 1: Canonicalize each incident (schema validation + normalization). Both
predictions and ground truth are parsed as full LossRunIncident objects and then normal-
ized:

16

• Incident identifier: we compute a normalized incident ID by stripping common
prefixes from incident_number (e.g., Incident #, #, INC) and trimming whitespace.

• String fields: all strings are trimmed. For optional string fields, the empty string is
treated as null. Optional string fields are:

– cause_code

– unit_number

– agency

– driver_name

– adjuster_notes

• Claimants: coerced to a list; each entry is trimmed; empty entries are dropped; the
list is sorted.

• Financial breakdowns: for each breakdown object (bi, pd, lae, ded), we ensure it
is an object and normalize each numeric field by converting to float, rounding to two
decimals, and mapping negative zero to zero. Unparseable values are treated as 0.0.
Breakdown numeric fields are:

– reserve

– paid

– recovered

– total_incurred

Step 2: Flatten incidents into a multiset of field-value pairs. For each canonicalized
incident, we emit a list of triples (incident_id, field_path, value). Nested financial
fields are represented with dotted paths (e.g., bi.reserve).

Step 3: Compare using multiset intersection (supports duplicates). Let F(G)
be the multiset of flattened triples from the ground truth and F(P) the multiset from
predictions. We compute

found = |F(G) ∩ F(P)|, (5)

recall = found
|F(G)| , (6)

precision = found
|F(P)| , (7)

F1 = 2 precision recall
precision + recall . (8)

The multiset formulation means that if a document contains exact duplicate incidents (same
normalized incident_id), they are counted with multiplicity, and the score only credits
matches up to the minimum count in each multiset.

17

Additional diagnostics. We also report:

• Missing/extra incident IDs: computed from the set of normalized incident IDs
present in each list.

• Exact record matches: the number of fully-matching incident objects, computed as
a multiset intersection over canonicalized incident JSON objects grouped by incident
ID.

18

	1 Introduction
	1.1 Background and Motivation
	1.2 Research Questions
	1.3 Contributions

	2 Related Work
	2.1 Document IE benchmarks
	2.2 Document understanding models

	3 Benchmark Construction
	3.1 Entity schema
	3.2 Document generation
	3.3 Injected problem types
	3.4 Dataset scale

	4 Evaluation
	4.1 OCR
	4.2 LLM extraction protocol
	4.3 Chunking and merging for long documents
	4.4 Report regeneration and validation
	4.5 Field-level matching and metrics

	5 Results
	5.1 OCR identifier coverage
	5.2 Zero-shot LLM extraction baseline

	6 Limitations and Future Directions
	6.1 Limitations
	6.2 Future directions

	7 Conclusion
	7.1 Summary
	7.2 Practical takeaways
	7.3 Recommended reporting
	7.4 Future Work

	Appendix A: Evaluation Schemas

